創形創質工学部会 ロードマップ指針

部会活動方針:鉄鋼材料に所要の形状と機能を付与する加工技 術及びそれにより製造された製品の利用利術の開拓を目指す

加熱•冷却

材料組織の造り込み 省エネ製造プロセスの開発 力学・モデリング

最適な製造プロセスの開発 材料の機械的性質の向上 高機能材料の開発

計測•可視化

最適な製造プロセスの開発 材料の寸法精度の向上 材料の機械的性質の向上

数值解析

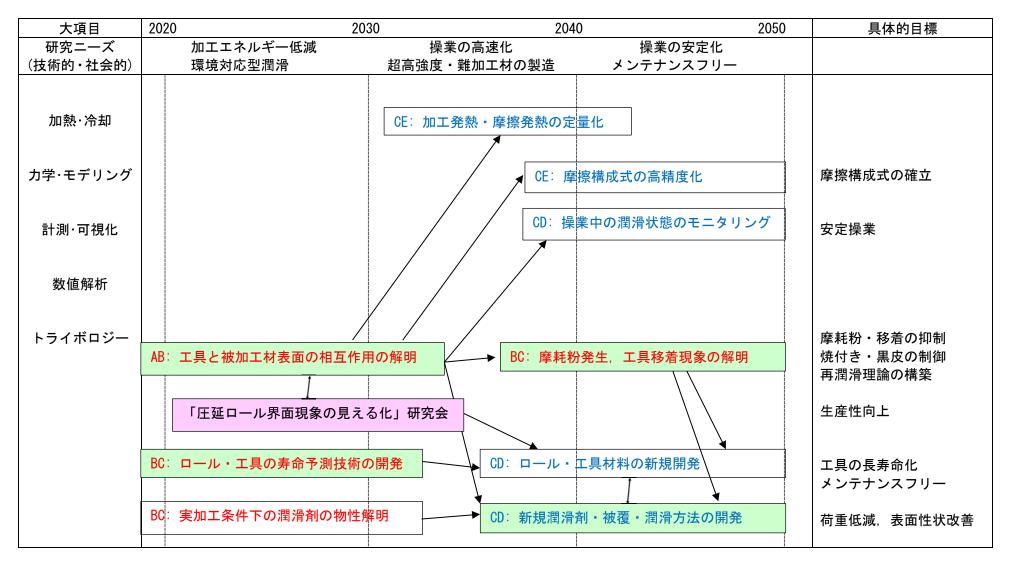
最適な製造プロセスの開発 材料の寸法精度の向上 高機能材料の開発 トライボロジー

工具の長寿命化 材料の表面性状の向上

大項目及びそれに関連した代表的な具体的目標

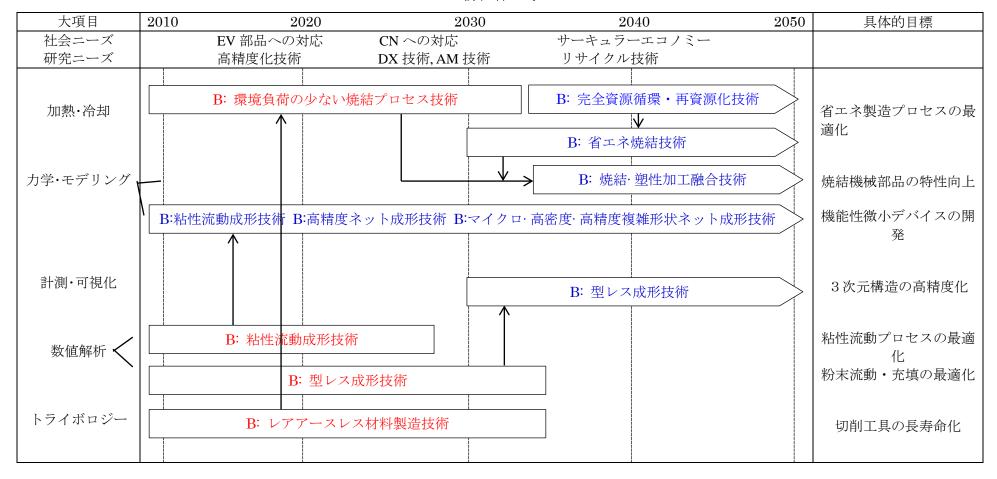
数理モデリング

	2010	2020	2030	20-	40	2050	キーワード・目標
社会的ニーズ	複雑な創形創作	質プロセスシミュレーシ	ョン技術の確立	現実と同等の	プロセス:	シミュレーション	試験不要な創形創質プロ
学術的ニーズ	現象の解明とモデル化 高精度・高速解析手法		省資源化ものづくりの ための数値解析の援用		加工・組織・機械的特性 統合プロセス解析		セスの高精度シミュレーション
加熱・冷却	B: 界面熱移動理 B: 界面熱移動理			BE: 界面熱移動現象解析技術			加熱・冷却の解析精度および解析速度の向上
力学・モデリング	B: 大ひずみ・ネ	型材質予測モデル 夏合負荷に対する高精度構 員傷解消の力学モデル化	成式			A: 加工・組織・ ▶ 機械的特性統合	材料組織・特性および形状を高精度に予測できる
数値解析	AB: 結晶塑性理 による数値解析	き,AM のモデル化および 論,分子動力学,フェー , デジタルツイン,ビッ	ズフィールズ法	A: 多軸応力場 構成式および 発展の高精度 測技術	損傷	プロセス解析	がエプロセスシミュレーション 数値解析精度および解析 速度の向上
計測・可視化	B: 残留応力予済 B: 高精度ミクロ AE: Insitu 組織						高精度計測・ 可視化技術の確立
		摩擦・摩耗の高精度なモ	デル化	BCDE: プロセスに る工具寿命の高精度			トライボロジー予測技術の確立


各項目の先頭に附された記号の意味は以下の通りである. (各部会において共通)

A: ナショプロ相当課題, B: 研究会対応課題, C: フォーラム重点課題, D: 各企業内対応課題, E: 他分野との連携課題

各項目に付けられた色の意味は以下の通りである. (各部会において共通)


赤字: 既に取組済みの課題, 青字:今後の取組予定の課題

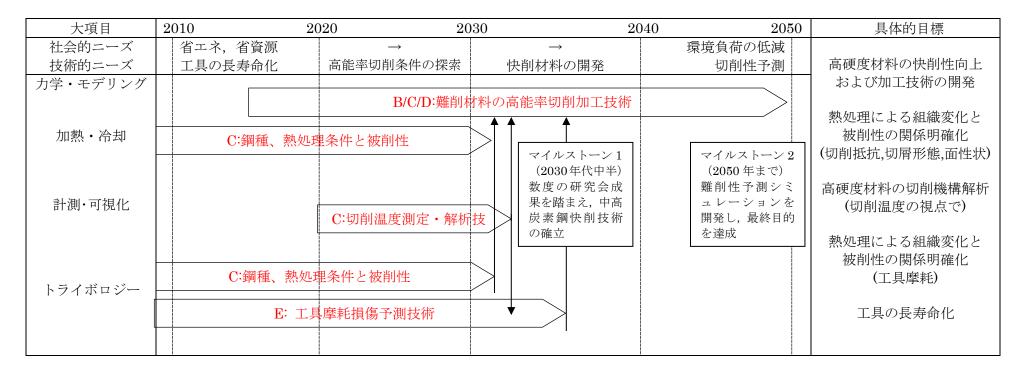
トライボロジー

A:ナショプロ相当課題, B:研究会対応課題, C:フォーラム重点課題, D:各企業内対応課題, E:他分野との連携課題 赤字:既に取組済みの課題, 青字:今後の取組予定の課題

粉粒体工学

ここで、各項目の先頭に附された記号の意味は以下の通りである. (各部会において共通) A:ナショプロ相当課題、B:研究会対応課題、C:フォーラム重点課題、D:各企業内対応課題、E:他分野との連携課題

また、各項目に付けられた色の意味は以下の通りである. (各部会において共通) 赤字:既に取組済みの課題、青字:今後の取組予定の課題


A:ナショプロ相当 創形創質工学部会ロードマップ 板圧延および板成形分野 B:研究会内 C:フォーラム重点 2010 2020 2030 2040 2050 D:企業内 E:連携 社会ニーズ ネットゼロ :マイルストーン 省エネ 高強度材 鉄源多様化 GHGへの挑戦 □:実施中研究会 赤字:2022着手済み 省加熱圧延と成形 |研究ニーズ 高強度材の圧延・成形 低品位材の圧延・成形 目標と目標達成 D:薄板・厚板の板面内均一冷却 1. 加熱冷却の スケール制御の実現 平坦度制御の自在化 後の姿 A:熱制御 高度化 材料科学 D:連続焼鈍炉内の蛇行・形状制御 △材料組織の創 製と高機能材料 D:板成形中の ││ D:熱技術利用による の開発 2. 力学・モデ 部分熱処理 板成形の高機能化 リング基礎理論 B/D:材料構成則と塑性モデリング ○超高強度版の 成形時ミクロ・マクロ現象のモデリング 冷間成形 B:高効率高精度な圧延・成形フルモデ → A/B:二相域圧延の理論と技術 ◎低品位高強度 ルによる不均一・非定常変形解析 圧延時ミクロ・マクロ現象のモデル 3. 数值解析法 材の二相域圧延 圧延時そり・蛇行・ガタのモデル D:数値解析による圧延・成形のデ による創製 ジタル可視化 デジタル可視化の実現 高度制 4. 計測および D:圧延データ利活用のための圧延画像処理技術 御・モ D:IoTを利用したFB・FFおよび △高度品質保証 可視化 ニタリ セットアップ B:内部状態のオンライン計測 (温度、組織、残留応力) ング B/D:冷間での潤滑発現メカニズム B/D:圧延・成形での潤滑および摩耗発 メカニズムの解明 5. トライボロ ◎金型負荷の劇 現メカニズム ジー 的な低減と摩耗 B:圧延・成形での高度 低減 アクティヴ潤滑制御

棒線工学

	2010	020 20	030 20	040 205	50	キーワード、目標
社会ニーズ	低炭素		→ ゼロカー		ジン	環境と経済性を両立
研究ニーズ	省エネルギー	デジタ	ル改革			させた棒線製造技術
高度な加熱・冷却	D:制御月	延技術	B+D:材料組織の造り込	74		材料組織制御の実現
高度な加熱・冷却	B:制御汽	却技術	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		17.1 4.1 Northが出け 19.4 4.7 2/2 2/2
高度な力学		B:高機械的性質(高強度·	マクロモデリング 高延性)棒線の製造技術 モニタリング			高品質棒線の製造
高度な計測		C:高効率·高速·高精度·省	エネルギープロセス開発			製造過程の最適化実現
高度な計測	A:複合材料製造プロセス	B:製造過程	ミ モデリング			高機能材料の開発
高度な数値解析	B:残留応力	制御技術				残留応力最適化の実現
		B:表面性状	モデリング			
高度な数値解析		B:高表面性状・疵な	し線材の製造技術			高表面性状棒線の製造
		C:界面状態	モニタリング			
トライボロジー	C:工具寿命	7予測技術				長寿命工具の実現

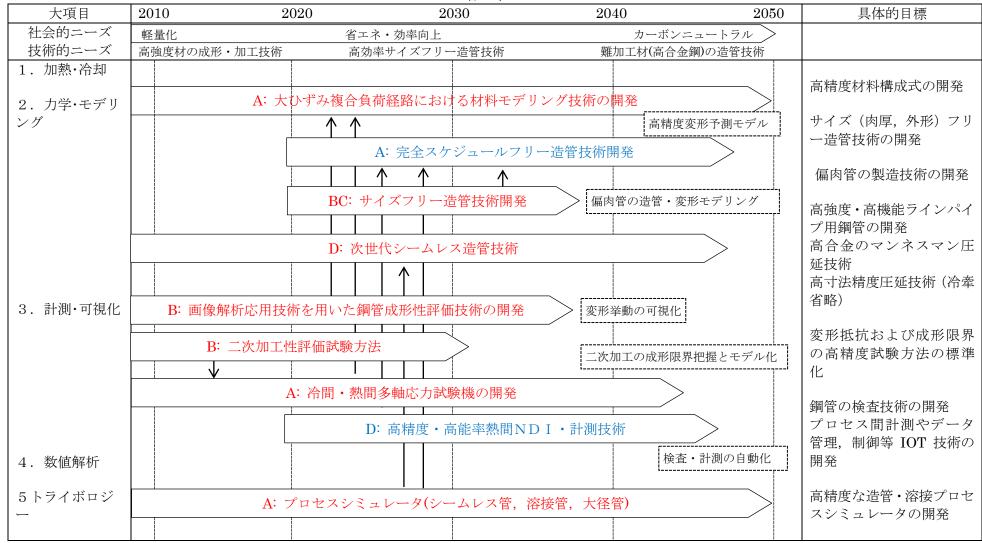
ここで、各項目の先頭に附された記号の意味は以下の通りである. (各部会において共通) A:ナショプロ相当課題、B:研究会対応課題、C:フォーラム重点課題、D:各企業内対応課題、E:他分野との連携課題 また、各項目に付けられた色の意味は以下の通りである. (各部会において共通) 赤字:既に取組済みの課題、青字:今後の取組予定の課題

切削工学

ここで、各項目の先頭に附された記号の意味は以下の通りである. (各部会において共通) A:ナショプロ相当課題、B:研究会対応課題、C:フォーラム重点課題、D:各企業内対応課題、E:他分野との連携課題

また,各項目に付けられた色の意味は以下の通りである.(各部会において共通) 赤字:既に取組済みの課題,青字:今後の取組予定の課題

創形創質工学部	A:ナショプロ相当 B:研究会内						
	2010	2020	203	0	2040	2050	C:フォーラム重点 D:企業内
社会ニーズ	人手不足		解体需	要の増加			E:連携 :マイルストーン :実施中研究会
研究ニーズ	高能率化		接合と気	分離の共存			赤字:2022着手済み
							目標と目標達成 後の姿
. 高能率溶接法			B:ノベル・ジョ/	イニング技術			高能率溶接・接合 プロセス技術の継 続的進歩
2. 分離前提接合				B:接合・分離共存持	支術		八部七台七十十
		L					分離を前提とした 接合技術の普及


鋼構造品工学

ここで、各項目の先頭に附された記号の意味は以下の通りである. (各部会において共通) A:ナショプロ相当課題, B:研究会対応課題, C:フォーラム重点課題, D:各企業内対応課題, E:他分野との連携課題

また,各項目に付けられた色の意味は以下の通りである.(各部会において共通) 赤字:既に取組済みの課題,青字:今後の取組予定の課題

管工学

ここで、各項目の先頭に附された記号の意味は以下の通りである. (各部会において共通) A:ナショプロ相当課題、B:研究会対応課題、C:フォーラム重点課題、D:各企業内対応課題 また、各項目に付けられた色の意味は以下の通りである. (各部会において共通) 赤字:既に取組済みの課題、青字:今後の取組予定の課題

A:ナショプロ相当 創形創質工学部会ロードマップ 冷却フォーラム B:研究会対応 C:フォーラム重点 2010 2020 2030 2040 2050 D:各企業内対応 E:他分野との連携 社会ニーズ ネットゼロ :マイルストーン 省エネ 高強度材 鉄源多様化 GHGへの挑戦 □:実施中研究会 赤字:2023着手済み ROT冷却技術高度化 AI・材料・伝熱等 他分野連携 |研究ニーズ 省加熱圧延と成形 目標と目標達成 BC: 伝熱境界条件の定式化(沸騰形態、クエンチ現象、噴流形状、姿勢、表面性状)。 1. 加熱・冷却 後の姿 A:熱制御 BD: 冷却手法 (冷却速度制御) の設計技術 材料科学 ◎最適な製造プロセ 2. 力学・モデ BC:スケール物性温度依存性モデリング スケール制御の実現 スの開発(AIとの統 リング 合による操業技術の BE: 圧延における加工・伝熱現象・材料組織複合現象解明 新技術創出への参画 抜本的向上) ◎他分野との協業に 3. 計測・可視 B: 耐熱高応答表面計測技術 よる現象解明制御技 化 術への貢献 B:沸騰面可視化技術 △沸騰現象の解明高 4. 数值解析 B:実験逆算手法への鉄鋼物性導入♥(変態含む) 度化 B:冷却流体のシミュレーション技術の高度化 ○材料組織の造込み B:冷却流体シミュレーションと伝熱境界条件予測の統合 ◎省エネ製造プロセ BE:冷却現象・材料組織の統合シミュレーショ スの開発 ンプラットフォームの構築(流体・物体内温度、 金属組織) ○材料組織・特性予 BE:トライボロジーにおける伝熱現象解明への参 5. トライボロ 測と最適製造プロセ ジー スの開発